Optimality of the trivial $(28,8,2,3)$ superimposed code

Mladen Manev
Department of Mathematics
Technical University of Gabrovo, Gabrovo, Bulgaria

Introduction

Introduction

Definition 1 A binary $N \times T$ matrix $C=\left(c_{i j}\right)$ is called an (N, T, w, r) superimposed code (SIC) if for any pair of subsets $W, R \subset\{1,2, \ldots, T\}$ such that $|W|=W,|R|=r$ and $W \cap R=\varnothing$ there exists a row $i \in\{1,2, \ldots, N\}$ such that $c_{i j}=1$ for all $j \in W$ and $c_{i j}=0$ for all $j \in R$. We say also that C is a (w, r) superimposed code of length N and size T.

Introduction

Trivial (N, T, w, r) superimposed code

Introduction

Trivial (N, T, w, r) superimposed code

$$
N=\binom{T}{w}
$$

Introduction

Trivial (N, T, w, r) superimposed code

$$
N=\binom{T}{w}
$$

The rows are all possible binary vectors of weight w.

Example: The trivial $(15,6,2,3)$ SIC

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0
\end{array}\right)
$$

Introduction

$N(T, w, r)$ - the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

Introduction

$N(T, w, r)$ - the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

The code is called optimal when $N=N(T, w, r)$.

Introduction

$N(T, w, r)$ - the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

The code is called optimal when $N=N(T, w, r)$.

T	5	6	7	8	9	10
$N(T, 2,3)$	10	15	21	$26-28$	$28-30$	30

Introduction

The first open case: $T=8$

Introduction

The first open case: $\quad T=8$
H. K. Kim, V. Lebedev, 2004: $24 \leqq N(8,2,3) \leqq 28$

Introduction

The first open case: $\quad T=8$
H. K. Kim, V. Lebedev, 2004: $24 \leqq N(8,2,3) \leqq 28$
S. Kapralov, M. Manev, 2006: $26 \leqq N(8,2,3) \leqq 28$

Introduction

The first open case: $\quad T=8$
H. K. Kim, V. Lebedev, 2004: $24 \leqq N(8,2,3) \leqq 28$
S. Kapralov, M. Manev, 2006: $26 \leqq N(8,2,3) \leqq 28$

In this paper: $\quad N(8,2,3)=28$

Introduction

The first open case: $\quad T=8$
H. K. Kim, V. Lebedev, 2004: $24 \leqq N(8,2,3) \leqq 28$
S. Kapralov, M. Manev, 2006: $26 \leqq N(8,2,3) \leqq 28$

In this paper: $\quad N(8,2,3)=28$

The trivial $(28,8,2,3)$ SIC is optimal.

Preliminaries

Preliminaries

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

Preliminaries

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

- permutation of the rows;

Preliminaries

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

- permutation of the rows;
- permutation of the columns.

Preliminaries

Let C be a binary $N \times T$ matrix.

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y $d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y $d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$
$d(C)=\sum_{x, y \in C, x \neq y} d(x, y)$

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y
$d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$
$d(C)=\sum_{x, y \in C, x \neq y} d(x, y)$
$d_{2}=\min \{d(x, y) \mid x, y \in C, x \neq y\}$

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y
$d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$
$d(C)=\sum_{x, y \in C, x \neq y} d(x, y)$
$d_{2}=\min \{d(x, y) \mid x, y \in C, x \neq y\}$
$d_{3}=\min \{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y
$d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$
$d(C)=\sum_{x, y \in C, x \neq y} d(x, y)$
$d_{2}=\min \{d(x, y) \mid x, y \in C, x \neq y\}$
$d_{3}=\min \{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$
$d(x, y, z)$ and d_{3} are even numbers.

Preliminaries

Let C be a binary $N \times T$ matrix.
$d(x, y)$ - the Hamming distance between two columns x and y
$d(x, y, z)=d(x, y)+d(x, z)+d(y, z)$
$d(C)=\sum_{x, y \in C, x \neq y} d(x, y)$
$d_{2}=\min \{d(x, y) \mid x, y \in C, x \neq y\}$
$d_{3}=\min \{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$
$d(x, y, z)$ and d_{3} are even numbers.
$3 d_{2} \leq d_{3}$

Preliminaries

Lemma 4 (Plotkin bound)

$$
\binom{T}{2} d_{2} \leq d(C) \leq N\left\lfloor\frac{T}{2}\right\rfloor\left\lfloor\frac{T+1}{2}\right\rfloor .
$$

Preliminaries

Lemma 4 (Plotkin bound)

$$
\binom{T}{2} d_{2} \leq d(C) \leq N\left\lfloor\frac{T}{2}\right\rfloor\left\lfloor\frac{T+1}{2}\right\rfloor .
$$

Corollary 5

$$
\binom{T}{3} d_{3} \leq(T-2) d(C) \leq(T-2) N\left\lfloor\frac{T}{2}\right\rfloor\left\lfloor\frac{T+1}{2}\right\rfloor .
$$

Preliminaries

Definition 6 Let $x_{1}, x_{2}, \ldots, x_{k}$ be different columns of the SIC C. The residual code $\operatorname{Res}\left(C, x_{1}=v_{1}, x_{2}=v_{2}, \ldots, x_{k}=v_{k}\right)$ of C is the code obtained by taking all the rows in which C has value v_{i} in the column x_{i} for $i=1,2, \ldots, k$ and deleting the columns $x_{1}, x_{2}, \ldots, x_{k}$ in the selected rows.

Preliminaries

Lemma 10 (Kapralov, Manev, 2006)
Any ($7,6,1,2$) superimposed code is equivalent to one of the codes

$$
C_{1,2, \ldots, 7}=\left(\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
* & * & * & * & * & *
\end{array}\right) \quad C_{8}=\left(\begin{array}{cccccc}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

The last row of $C_{1,2, \ldots, 7}$ is 0000000, 0000001, 0000011, 0000111, 0001111 , 0011111,0111111 or 1111111 respectively.

The nonexistence of $(27,8,2,3)$ SIC

Lemma 13 Let C be a $(27,8,2,3)$ superimposed code and x and y are two different columns of C. Then $\operatorname{Res}(C, x=0, y=1)$ contains at most 5 rows of weight 0 or 1 .

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$. Proof

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y-columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$
$\operatorname{Res}(C, x=0, y=1)$ or $\operatorname{Res}(C, x=1, y=0)$ is equivalent to the code

$$
C_{8}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$
$\operatorname{Res}(C, x=0, y=1)$ or $\operatorname{Res}(C, x=1, y=0)$ is equivalent to the code

$$
C_{8}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow d(C) \leqq 429$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$
$\operatorname{Res}(C, x=0, y=1)$ or $\operatorname{Res}(C, x=1, y=0)$ is equivalent to the code

$$
C_{8}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow d(C) \leqq 429$
Corollary $5 \Rightarrow d_{3} \leqq 45 \frac{27}{28}$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$
$\operatorname{Res}(C, x=0, y=1)$ or $\operatorname{Res}(C, x=1, y=0)$ is equivalent to the code

$$
C_{8}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow d(C) \leqq 429$
Corollary $5 \Rightarrow d_{3} \leqq 45 \frac{27}{28}$
d_{3} is an even number $\Rightarrow d_{3} \leqq 44$

The nonexistence of $(27,8,2,3)$ SIC

Lemma 14 Let C be a $(27,8,2,3)$ superimposed code. Then $d_{2}=14$.

Proof

x and y - columns of C at distance d_{2}
Lemma $13 \Rightarrow d_{2} \geqq 14$
Lemma $4 \Rightarrow d_{2} \leqq 15$
$\operatorname{Res}(C, x=0, y=1)$ or $\operatorname{Res}(C, x=1, y=0)$ is equivalent to the code

$$
C_{8}=\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\Rightarrow d(C) \leqq 429$
Corollary $5 \Rightarrow d_{3} \leqq 45 \frac{27}{28}$
d_{3} is an even number $\Rightarrow d_{3} \leqq 44 \Rightarrow d_{2}=14$

The nonexistence of $(27,8,2,3)$ SIC

Theorem 15 There is no $(27,8,2,3)$ superimposed code.

The nonexistence of $(27,8,2,3)$ SIC

Theorem 15 There is no $(27,8,2,3)$ superimposed code.

Proof

The nonexistence of $(27,8,2,3)$ SIC

Theorem 15 There is no $(27,8,2,3)$ superimposed code.

Proof
Let C be a $(27,8,2,3)$ superimposed code.

The nonexistence of $(27,8,2,3)$ SIC

Theorem 15 There is no $(27,8,2,3)$ superimposed code.

Proof
 Let C be a $(27,8,2,3)$ superimposed code.
 Lemma $14 \Rightarrow$ there exist two columns x and y such that $d(x, y)=14$.

The nonexistence of $(27,8,2,3)$ SIC

Theorem 15 There is no $(27,8,2,3)$ superimposed code.

Proof

Let C be a $(27,8,2,3)$ superimposed code.
Lemma $14 \Rightarrow$ there exist two columns x and y such that $d(x, y)=14$.
Lemma 10 and Lemma $13 \Rightarrow \operatorname{Res}(C, x=0, y=1)$ and $\operatorname{Res}(C, y=0, x=1)$ are equivalent to the code

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

The nonexistence of $(27,8,2,3)$ SIC

x y	
01 01	$(7,6,1,2) \mathrm{SIC}$
$\begin{gathered} \hline 10 \\ \vdots \\ 10 \end{gathered}$	$(7,6,1,2) \mathrm{SIC}$
$\begin{gathered} \hline 00 \\ \vdots \\ 0 \\ 0 \end{gathered}$	M rows
11 \vdots 11	$13-M$ rows

The nonexistence of $(27,8,2,3)$ SIC

$x y$
$\left.\begin{array}{\|c\|c\|}\hline 0 & 1 \\ \vdots & \\ 0 & 1\end{array}\right](7,6,1,2)$ SIC
10
\vdots
\vdots
1

30 inequivalent possibilities for the first 14 rows of C

The nonexistence of $(27,8,2,3)$ SIC

x y	
$\begin{gathered} 01 \\ \vdots \\ 0 \\ 0 \end{gathered}$	$(7,6,1,2) \mathrm{SIC}$
$\begin{gathered} 10 \\ \vdots \vdots \\ 10 \end{gathered}$	$(7,6,1,2) \mathrm{SIC}$
$\begin{gathered} \hline 00 \\ \vdots \\ 0 \\ 0 \end{gathered}$	M rows
11 \vdots \vdots 1 1	$13-M$ rows

30 inequivalent possibilities for the first 14 rows of C

$$
7 \leqq M \leqq 12
$$

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;
- the superimposed code property;

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a $(27,8,2,3)$ superimposed code is impossible.

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a $(27,8,2,3)$ superimposed code is impossible.
Therefore there is no $(27,8,2,3)$ superimposed code.

The nonexistence of $(27,8,2,3)$ SIC

We construct the missing parts column by column and at each step we check the conditions of:

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a $(27,8,2,3)$ superimposed code is impossible.
Therefore there is no $(27,8,2,3)$ superimposed code.

Theorem 16 The trivial $(28,8,2,3)$ superimposed code is optimal.

