Optimality of the trivial (28,8,2,3) superimposed code

> Mladen Manev Department of Mathematics Technical University of Gabrovo, Gabrovo, Bulgaria

Introduction

Definition 1 A binary $N \times T$ matrix $C = (c_{ij})$ is called an (N, T, w, r)superimposed code (SIC) if for any pair of subsets $W, R \subset \{1, 2, ..., T\}$ such that |W| = w, |R| = r and $W \cap R = \emptyset$ there exists a row $i \in \{1, 2, ..., N\}$ such that $c_{ij} = 1$ for all $j \in W$ and $c_{ij} = 0$ for all $j \in R$. We say also that C is a (w, r) superimposed code of length N and size T.

Optimality of the trivial (28,8,2,3) superimposed code

Trivial (*N*, *T*, *w*, *r*) superimposed code

Optimality of the trivial (28,8,2,3) superimposed code

Trivial (N, T, w, r) superimposed code

$$N = \begin{pmatrix} T \\ w \end{pmatrix}$$

Optimality of the trivial (28,8,2,3) superimposed code

Trivial (N, T, w, r) superimposed code

$$N = \begin{pmatrix} T \\ w \end{pmatrix}$$

The rows are all possible binary vectors of weight w.

Optimality of the trivial (28,8,2,3) superimposed code

Example: The trivial (15, 6, 2, 3) SIC

Optimality of the trivial (28,8,2,3) superimposed code

N(T, w, r) – the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

N(T, w, r) – the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

The code is called optimal when N = N(T, w, r).

N(T, w, r) – the minimum length of an (N, T, w, r) superimposed code for given values of T, w and r.

The code is called optimal when N = N(T, w, r).

Т	5	6	7	8	9	10
N(T, 2, 3)	10	15	21	26 - 28	28 - 30	30

Optimality of the trivial (28,8,2,3) superimposed code

Optimality of the trivial (28,8,2,3) superimposed code

H. K. Kim, V. Lebedev, 2004: $24 \le N(8, 2, 3) \le 28$

Optimality of the trivial (28,8,2,3) superimposed code

H. K. Kim, V. Lebedev, 2004: $24 \le N(8, 2, 3) \le 28$

S. Kapralov, M. Manev, 2006: $26 \le N(8, 2, 3) \le 28$

Optimality of the trivial (28,8,2,3) superimposed code

H. K. Kim, V. Lebedev, 2004: $24 \leq N(8, 2, 3) \leq 28$

S. Kapralov, M. Manev, 2006: $26 \leq N(8, 2, 3) \leq 28$

In this paper: N(8, 2, 3) = 28

Optimality of the trivial (28,8,2,3) superimposed code

H. K. Kim, V. Lebedev, 2004: $24 \leq N(8, 2, 3) \leq 28$

S. Kapralov, M. Manev, 2006: $26 \leq N(8, 2, 3) \leq 28$

In this paper: N(8, 2, 3) = 28

```
The trivial (28, 8, 2, 3) SIC is optimal.
```

Optimality of the trivial (28,8,2,3) superimposed code

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

• permutation of the rows;

Optimality of the trivial (28,8,2,3) superimposed code

Definition 2 Two (N, T, w, r) superimposed codes are equivalent if one of them can be transformed into the other by a series of operations of the following two types:

- permutation of the rows;
- permutation of the columns.

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) – the Hamming distance between two columns x and y

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) – the Hamming distance between two columns x and y d(x, y, z) = d(x, y) + d(x, z) + d(y, z)

Let C be a binary $N \times T$ matrix.

d(x, y) – the Hamming distance between two columns x and yd(x, y, z) = d(x, y) + d(x, z) + d(y, z) $d(C) = \sum_{x,y \in C, x \neq y} d(x, y)$

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) - the Hamming distance between two columns x and yd(x, y, z) = d(x, y) + d(x, z) + d(y, z) $d(C) = \sum_{x,y \in C, x \neq y} d(x, y)$ $d_2 = \min\{d(x, y) \mid x, y \in C, x \neq y\}$

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) - the Hamming distance between two columns x and yd(x, y, z) = d(x, y) + d(x, z) + d(y, z) $d(C) = \sum_{x,y \in C, x \neq y} d(x, y)$ $d_2 = \min\{d(x, y) \mid x, y \in C, x \neq y\}$ $d_3 = \min\{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) – the Hamming distance between two columns x and y d(x, y, z) = d(x, y) + d(x, z) + d(y, z) $d(C) = \sum_{x,y \in C, x \neq y} d(x, y)$ $d_2 = \min\{d(x, y) \mid x, y \in C, x \neq y\}$ $d_3 = \min\{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$ d(x, y, z) and d_3 are even numbers.

Optimality of the trivial (28,8,2,3) superimposed code

Let C be a binary $N \times T$ matrix.

d(x, y) – the Hamming distance between two columns x and y d(x, y, z) = d(x, y) + d(x, z) + d(y, z) $d(C) = \sum_{x,y \in C, x \neq y} d(x,y)$ $d_2 = \min\{d(x, y) \mid x, y \in C, x \neq y\}$ $d_3 = \min\{d(x, y, z) \mid x, y, z \in C, x \neq y, x \neq z, y \neq z\}$ d(x, y, z) and d_3 are even numbers. $3d_2 \leq d_3$

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 4 (Plotkin bound)

$$\binom{T}{2}d_2 \leq d(C) \leq N\left\lfloor \frac{T}{2} \right\rfloor \left\lfloor \frac{T+1}{2} \right\rfloor.$$

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 4 (Plotkin bound)

$$\binom{T}{2}d_2 \leq d(C) \leq N\left\lfloor \frac{T}{2} \right\rfloor \left\lfloor \frac{T+1}{2} \right\rfloor.$$

Corollary 5

$$\binom{T}{3}d_3 \leq (T-2)d(C) \leq (T-2)N\left\lfloor \frac{T}{2} \right\rfloor \left\lfloor \frac{T+1}{2} \right\rfloor.$$

Optimality of the trivial (28,8,2,3) superimposed code

Definition 6 Let $x_1, x_2, ..., x_k$ be different columns of the SIC C. The residual code $Res(C, x_1 = v_1, x_2 = v_2, ..., x_k = v_k)$ of C is the code obtained by taking all the rows in which C has value v_i in the column x_i for i = 1, 2, ..., k and deleting the columns $x_1, x_2, ..., x_k$ in the selected rows.

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 10 (*Kapralov*, *Manev*, 2006) Any (7, 6, 1, 2) superimposed code is equivalent to one of the codes

$$C_{1,2,\dots,7} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ * & * & * & * & * & * \end{pmatrix} C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

The last row of C_{1,2,...,7} *is* 0000000, 0000001, 0000011, 0000111, 0001111, 0011111, 0111111 or 1111111 *respectively.*

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 13 Let C be a (27, 8, 2, 3) superimposed code and x and y are two different columns of C. Then Res(C, x = 0, y = 1) contains at most 5 rows of weight 0 or 1.

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 14 Let C be a (27, 8, 2, 3) superimposed code. Then $d_2 = 14$.

Optimality of the trivial (28,8,2,3) superimposed code

Lemma 14 Let *C* be a (27, 8, 2, 3) superimposed code. Then $d_2 = 14$.

Proof

Optimality of the trivial (28,8,2,3) superimposed code

Proof

x and y – columns of C at distance d_2

Proof

x and y – columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$

Proof

x and y - columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$

Proof

x and y - columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$ Res(C, x = 0, y = 1) or Res(C, x = 1, y = 0) is equivalent to the code

$$C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

Optimality of the trivial (28,8,2,3) superimposed code

Proof

x and y – columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$ Res(C, x = 0, y = 1) or Res(C, x = 1, y = 0) is equivalent to the code

$$C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow d(C) \leq 429$

Optimality of the trivial (28,8,2,3) superimposed code

Proof

x and y – columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$ Res(C, x = 0, y = 1) or Res(C, x = 1, y = 0) is equivalent to the code

$$C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow d(C) \leq 429$ Corollary $5 \Rightarrow d_3 \leq 45\frac{27}{28}$

Proof

x and y – columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$ Res(C, x = 0, y = 1) or Res(C, x = 1, y = 0) is equivalent to the code

$$C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow d(C) \leq 429$ Corollary $5 \Rightarrow d_3 \leq 45\frac{27}{28}$ d_3 is an even number $\Rightarrow d_3 \leq 44$

Optimality of the trivial (28,8,2,3) superimposed code

Proof

x and y – columns of C at distance d_2 Lemma 13 $\Rightarrow d_2 \ge 14$ Lemma 4 $\Rightarrow d_2 \le 15$ Res(C, x = 0, y = 1) or Res(C, x = 1, y = 0) is equivalent to the code

$$C_8 = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 0 & 0 & 1 \end{pmatrix}$$

 $\Rightarrow d(C) \leq 429$ Corollary $5 \Rightarrow d_3 \leq 45\frac{27}{28}$ d_3 is an even number $\Rightarrow d_3 \leq 44 \Rightarrow d_2 = 14$

Optimality of the trivial (28,8,2,3) superimposed code

Optimality of the trivial (28,8,2,3) superimposed code

Proof

Optimality of the trivial (28,8,2,3) superimposed code

Proof

Let C be a (27,8,2,3) superimposed code.

Optimality of the trivial (28,8,2,3) superimposed code

Proof

Let C be a (27,8,2,3) superimposed code. Lemma 14 \Rightarrow there exist two columns x and y such that d(x, y) = 14.

Optimality of the trivial (28,8,2,3) superimposed code

Proof

Let C be a (27,8,2,3) superimposed code. Lemma 14 \Rightarrow there exist two columns x and y such that d(x, y) = 14. Lemma 10 and Lemma 13 $\Rightarrow Res(C, x = 0, y = 1)$ and Res(C, y = 0, x = 1) are equivalent to the code

ху	
01	
::	(7,6,1,2) SIC
01	
10	
::	(7, 6, 1, 2) SIC
10	
00	
::	M rows
00	
11	
::	13 - M rows
11	

Optimality of the trivial (28,8,2,3) superimposed code

ху	
01	
::	(7,6,1,2) SIC
01	
10	
::	(7,6,1,2) SIC
10	
00	
:::	M rows
00	
11	
::	13 - M rows
11	

30 inequivalent possibilities for the first 14 rows of C

Optimality of the trivial (28,8,2,3) superimposed code

ху	
01	
	(7, 6, 1, 2) SIC
01	
10	
::	(7,6,1,2) SIC
10	
00	
::	M rows
00	
11	
::	13 - M rows
11	

30 inequivalent possibilities for the first 14 rows of C

$$7 \leq M \leq 12$$

Optimality of the trivial (28,8,2,3) superimposed code

• Lemma 14;

- Lemma 14;
- the superimposed code property;

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a (27, 8, 2, 3) superimposed code is impossible.

Optimality of the trivial (28,8,2,3) superimposed code

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a (27, 8, 2, 3) superimposed code is impossible.

Therefore there is no (27, 8, 2, 3) superimposed code.

- Lemma 14;
- the superimposed code property;
- the sorted last 13 rows property.

It turned out that the extension to a (27, 8, 2, 3) superimposed code is impossible.

Therefore there is no (27, 8, 2, 3) superimposed code.

Theorem 16 The trivial (28, 8, 2, 3) superimposed code is optimal.

Optimality of the trivial (28,8,2,3) superimposed code